Ticket #62: event.log
File event.log, 30.4 KB (added by , 15 years ago) |
---|
Line | |
---|---|
1 | ---------------------------------------------------------- |
2 | -- SHERPA generates events with the following structure -- |
3 | ---------------------------------------------------------- |
4 | Perturbative : Signal_Processes |
5 | Perturbative : Hard_Decays |
6 | Perturbative : Jet_Evolution:CSS |
7 | Perturbative : Lepton_FS_QED_Corrections:None |
8 | Perturbative : Multiple_Interactions:None |
9 | Hadronization : Beam_Remnants |
10 | Hadronization : Hadronization:Off |
11 | Hadronization : Hadron_Decays,Photons |
12 | Analysis : Rivet |
13 | --------------------------------------------------------- |
14 | Event_Handler::GenerateEvent(): run 'Signal_Processes' |
15 | Jet_Finder::Trigger(): '2_4__u__cb__u__cb__s__sb' Q_cut = 10 { |
16 | (2)[u] -> 47.2593 |
17 | (3)[cb] -> 25.0513 |
18 | (4)[s] -> 36.347 |
19 | (5)[sb] -> 9.98219 |
20 | level = 1 { |
21 | (0)[ub] & (2)[u] <-> (1)[c], qcut = 10, ptjk = 30.8064 (1) |
22 | (0)[ub] & (2)[u] <-> (3)[cb], qcut = 10, ptjk = 30.2104 (1) |
23 | (0)[ub] & (2)[u] <-> (4)[s], qcut = 10, ptjk = 33.018 (1) |
24 | (0)[ub] & (2)[u] <-> (5)[sb], qcut = 10, ptjk = 37.4155 (1) |
25 | (1)[c] & (3)[cb] <-> (0)[ub], qcut = 10, ptjk = 52.2386 (1) |
26 | (1)[c] & (3)[cb] <-> (2)[u], qcut = 10, ptjk = 50.9557 (1) |
27 | (1)[c] & (3)[cb] <-> (4)[s], qcut = 10, ptjk = 55.9287 (1) |
28 | (1)[c] & (3)[cb] <-> (5)[sb], qcut = 10, ptjk = 52.5663 (1) |
29 | (4)[s] & (5)[sb] <-> (0)[ub], qcut = 10, ptjk = 41.0252 (1) |
30 | (4)[s] & (5)[sb] <-> (1)[c], qcut = 10, ptjk = 41.0252 (1) |
31 | (4)[s] & (5)[sb] <-> (2)[u], qcut = 10, ptjk = 41.0252 (1) |
32 | (4)[s] & (5)[sb] <-> (3)[cb], qcut = 10, ptjk = 41.0252 (1) |
33 | } |
34 | } |
35 | Assign '2_4__u__cb__u__cb__s__sb' 'O(QCD)=4' |
36 | Actual = (0x212d8430)[0]: 2 -> 4 { |
37 | \mu_r = 0, \mu_f = 0 |
38 | x_1 = 0.253467, x_2 = 0.0504744 |
39 | k_{T,QCD} = 0, (R/B)_{max} = 1 |
40 | oew = 0, oqcd = 0, kin = 0 |
41 | swap = 0, new = (<no entry>) |
42 | (0) ub (-248.398,-0,-0,-248.398) (0,3) [0|0,0] |
43 | (1) c (-49.4649,-0,-0,49.4649) (1,0) [0|0,0] |
44 | (2) u (216.327,-29.613,36.8309,211.101) (3,0) [0|0,0] |
45 | (3) cb (25.7205,25.0505,0.200163,-5.82926) (0,1) [0|0,0] |
46 | (4) s (37.4602,13.9267,-33.5731,9.06444) (3,0) [0|0,0] |
47 | (5) sb (18.3553,-9.36411,-3.45796,-15.4036) (0,3) [0|0,0] |
48 | } |
49 | Cluster G (4) & (5) <-> (1) => 9.71688 (0.043601) <-> 0 |
50 | Vetoed P = (0) & (2) <-> (4,5) |
51 | Vetoed Z = (0) & (2) <-> (4,5) |
52 | Vetoed ub = (0) & (4,5) <-> (1) |
53 | Vetoed ub = (0) & (4,5) <-> (3) |
54 | Vetoed c = (1) & (4,5) <-> (0) |
55 | Vetoed c = (1) & (4,5) <-> (2) |
56 | Vetoed u = (2) & (4,5) <-> (1) |
57 | Vetoed u = (2) & (4,5) <-> (3) |
58 | Vetoed cb = (3) & (4,5) <-> (0) |
59 | Vetoed cb = (3) & (4,5) <-> (2) |
60 | Actual = (0x212cfcf0)[0]: 2 -> 3 { |
61 | \mu_r = 0, \mu_f = 0 |
62 | x_1 = 0.253467, x_2 = 0.0331184 |
63 | k_{T,QCD} = 9.71688, (R/B)_{max} = 1 |
64 | oew = 0, oqcd = 0, kin = 0 |
65 | swap = 0, new = (<no entry>) |
66 | (0) ub (-248.398,-3.26183e-16,2.60947e-15,-248.398) (0,3) [0|0,0] |
67 | (1) c (-32.4561,3.26183e-16,-2.60947e-15,32.4561) (1,0) [0|0,0] |
68 | (2) u (216.327,-29.613,36.8309,211.101) (3,0) [0|0,0] |
69 | (3) cb (25.7205,25.0505,0.200163,-5.82926) (0,1) [0|0,0] |
70 | (4,5) G (38.8067,4.56256,-37.0311,10.6696) (3,3) [0|0,0] |
71 | } |
72 | Cluster cb (3) & (4,5) <-> (1) => 19.7486 (0.0198592) <-> 9.71688 |
73 | Core = (0x212d8530)[0]: 2 -> 2 { |
74 | \mu_r = 0, \mu_f = 0 |
75 | x_1 = 0.253467, x_2 = 0.0190932 |
76 | k_{T,QCD} = 19.7486, (R/B)_{max} = 1 |
77 | oew = 0, oqcd = 0, kin = 0 |
78 | swap = 0, new = (<no entry>) |
79 | (0) ub (-248.398,-8.68906e-15,1.65476e-14,-248.398) (0,3) [0|0,0] |
80 | (1) c (-18.7113,8.36287e-15,-1.39381e-14,18.7113) (1,0) [0|0,0] |
81 | (2) u (216.327,-29.613,36.8309,211.101) (3,0) [0|0,0] |
82 | (3,4,5) cb (50.7824,29.613,-36.8309,18.5852) (0,1) [0|0,0] |
83 | } |
84 | QCD scale = 47.2593 |
85 | Set \mu_r = 5, \mu_f = 47.2593 |
86 | Assign '2_4__u__cb__u__cb__s__sb' 'O(QCD)=4' |
87 | METS_KFactor_Setter::KFactor(): 2_4__u__cb__u__cb__s__sb (6,4) { |
88 | \mu_{fac} = 47.2593 |
89 | \mu_{ren} = 5 |
90 | } -> as = 0.213459 => K = 44.0931 |
91 | csum: me = 0.00236047 / 9.10171e-05, ps = 11.9937, p[2] = (216.327,-29.613,36.8309,211.101) 2_4__u__cb__u__cb__s__sb |
92 | Blob List with 1 elements { |
93 | Blob [6]( 1, Signal Process , 2 -> 4 @ (0,0,0,0) |
94 | Incoming particles : |
95 | [G] 2 u 1 ( -> 1) [( 2.4840e+02, 0.0000e+00, 0.0000e+00, 2.4840e+02), p^2= 0.0000e+00, m= 0.0000e+00] ( 0, 0) |
96 | [G] 2 cb 2 ( -> 1) [( 4.9465e+01, 0.0000e+00, 0.0000e+00,-4.9465e+01), p^2= 2.2737e-12, m= 0.0000e+00] ( 0, 0) |
97 | Outgoing particles : |
98 | [H] 1 u 3 ( 1 -> ) [( 2.1633e+02,-2.9613e+01, 3.6831e+01, 2.1110e+02), p^2= 1.4552e-11, m= 0.0000e+00] ( 0, 0) |
99 | [H] 1 cb 4 ( 1 -> ) [( 2.5721e+01, 2.5050e+01, 2.0016e-01,-5.8293e+00), p^2=-1.1369e-13, m= 0.0000e+00] ( 0, 0) |
100 | [H] 1 s 5 ( 1 -> ) [( 3.7460e+01, 1.3927e+01,-3.3573e+01, 9.0644e+00), p^2= 0.0000e+00, m= 0.0000e+00] ( 0, 0) |
101 | [H] 1 sb 6 ( 1 -> ) [( 1.8355e+01,-9.3641e+00,-3.4580e+00,-1.5404e+01), p^2= 5.6843e-14, m= 0.0000e+00] ( 0, 0) |
102 | Data_Container: |
103 | * Enhance (-1) |
104 | * Factorisation_Scale (2233) |
105 | * Trials (1) |
106 | * Weight (1.309e+05) |
107 | * XF1 (1.722) |
108 | * XF2 (1.599) |
109 | |
110 | } |
111 | Event_Handler::GenerateEvent(): run 'Signal_Processes' |
112 | Event_Handler::GenerateEvent(): run 'Hard_Decays' |
113 | Event_Handler::GenerateEvent(): run 'Jet_Evolution:CSS' |
114 | Jet_Finder::Trigger(): '2_4__u__cb__u__cb__s__sb' Q_cut = 10 { |
115 | (2)[u] -> 47.26 |
116 | (3)[cb] -> 25.05 |
117 | (4)[s] -> 36.35 |
118 | (5)[sb] -> 9.982 |
119 | level = 1 { |
120 | (0)[ub] & (2)[u] <-> (1)[c], qcut = 10, ptjk = 30.81 (1) |
121 | (0)[ub] & (2)[u] <-> (3)[cb], qcut = 10, ptjk = 30.21 (1) |
122 | (0)[ub] & (2)[u] <-> (4)[s], qcut = 10, ptjk = 33.02 (1) |
123 | (0)[ub] & (2)[u] <-> (5)[sb], qcut = 10, ptjk = 37.42 (1) |
124 | (1)[c] & (3)[cb] <-> (0)[ub], qcut = 10, ptjk = 52.24 (1) |
125 | (1)[c] & (3)[cb] <-> (2)[u], qcut = 10, ptjk = 50.96 (1) |
126 | (1)[c] & (3)[cb] <-> (4)[s], qcut = 10, ptjk = 55.93 (1) |
127 | (1)[c] & (3)[cb] <-> (5)[sb], qcut = 10, ptjk = 52.57 (1) |
128 | (4)[s] & (5)[sb] <-> (0)[ub], qcut = 10, ptjk = 41.03 (1) |
129 | (4)[s] & (5)[sb] <-> (1)[c], qcut = 10, ptjk = 41.03 (1) |
130 | (4)[s] & (5)[sb] <-> (2)[u], qcut = 10, ptjk = 41.03 (1) |
131 | (4)[s] & (5)[sb] <-> (3)[cb], qcut = 10, ptjk = 41.03 (1) |
132 | } |
133 | } |
134 | Cluster_Algorithm::Cluster(): trig = 1 { |
135 | (0x212d8430)[0]: 2 -> 4 { |
136 | \mu_r = 5, \mu_f = 47.26 |
137 | x_1 = 0.2535, x_2 = 0.05047 |
138 | k_{T,QCD} = 0, (R/B)_{max} = 1 |
139 | oew = 4, oqcd = 4, kin = 0 |
140 | swap = 0, new = (<no entry>) |
141 | (0) ub (-248.4,-0,-0,-248.4) (0,3) [1|0,0] |
142 | (1) c (-49.46,-0,-0,49.46) (1,0) [1|0,0] |
143 | (2) u (216.3,-29.61,36.83,211.1) (3,0) [1|0,0] |
144 | (3) cb (25.72,25.05,0.2002,-5.829) (0,1) [1|0,0] |
145 | (4) s (37.46,13.93,-33.57,9.064) (3,0) [1|0,0] |
146 | (5) sb (18.36,-9.364,-3.458,-15.4) (0,3) [1|0,0] |
147 | } |
148 | set color 601 |
149 | (1) c (-49.46,-0,-0,49.46) (601,0) [1|0,0] |
150 | (3) cb (25.72,25.05,0.2002,-5.829) (0,601) [1|0,0] |
151 | set color 602 |
152 | (2) u (216.3,-29.61,36.83,211.1) (602,0) [1|0,0] |
153 | (0) ub (-248.4,-0,-0,-248.4) (0,602) [1|0,0] |
154 | set color 603 |
155 | (4) s (37.46,13.93,-33.57,9.064) (603,0) [1|0,0] |
156 | (5) sb (18.36,-9.364,-3.458,-15.4) (0,603) [1|0,0] |
157 | sc: csum = 4.348e-11 |
158 | Cluster_Algorithm::ClusterStep(): step = 2 { |
159 | Cluster_Algorithm::CalculateMeasures(): { |
160 | (1)&(3): c,cb -> P [1,0] { |
161 | Set fixed n_perp |
162 | Kernel weight [3] ( x = 0.03236 ) { |
163 | (1) c (-49.46,-0,-0,49.46) (601,0) [1|0,0] |
164 | (3) cb (25.72,25.05,0.2002,-5.829) (0,601) [1|0,0] |
165 | (0) ub (-248.4,-0,-0,-248.4) (0,602) [1|0,0] |
166 | } -> w = 1.492e-154 (4.735e+156) |
167 | calc Q_{(1)c,(3)cb->P;(0)} -> CP{kt=26.58,op=2.176e+78,x=0.641,k=0} |
168 | p_{(1)} = (-49.46,-0,-0,49.46) (601,0) |
169 | p_{(3)} = (25.72,25.05,0.2002,-5.829) (0,601) |
170 | p_{(0)} = (-248.4,-0,-0,-248.4) (0,602) |
171 | Kernel weight [1] ( x = 0.0333 ) { |
172 | (1) c (-49.46,-0,-0,49.46) (601,0) [1|0,0] |
173 | (3) cb (25.72,25.05,0.2002,-5.829) (0,601) [1|0,0] |
174 | (2) u (216.3,-29.61,36.83,211.1) (602,0) [1|0,0] |
175 | } -> w = 1.492e-154 (4.489e+156) |
176 | calc Q_{(1)c,(3)cb->P;(2)} -> CP{kt=25.88,op=2.119e+78,x=0.6597,k=0} |
177 | p_{(1)} = (-49.46,-0,-0,49.46) (601,0) |
178 | p_{(3)} = (25.72,25.05,0.2002,-5.829) (0,601) |
179 | p_{(2)} = (216.3,-29.61,36.83,211.1) (602,0) |
180 | Kernel weight [1] ( x = 0.04012 ) { |
181 | (1) c (-49.46,-0,-0,49.46) (601,0) [1|0,0] |
182 | (3) cb (25.72,25.05,0.2002,-5.829) (0,601) [1|0,0] |
183 | (4) s (37.46,13.93,-33.57,9.064) (603,0) [1|0,0] |
184 | } -> w = 1.492e-154 (2.707e+156) |
185 | calc Q_{(1)c,(3)cb->P;(4)} -> CP{kt=20.1,op=1.645e+78,x=0.7948,k=0} |
186 | p_{(1)} = (-49.46,-0,-0,49.46) (601,0) |
187 | p_{(3)} = (25.72,25.05,0.2002,-5.829) (0,601) |
188 | p_{(4)} = (37.46,13.93,-33.57,9.064) (603,0) |
189 | Kernel weight [1] ( x = 0.02289 ) { |
190 | (1) c (-49.46,-0,-0,49.46) (601,0) [1|0,0] |
191 | (3) cb (25.72,25.05,0.2002,-5.829) (0,601) [1|0,0] |
192 | (5) sb (18.36,-9.364,-3.458,-15.4) (0,603) [1|0,0] |
193 | } -> w = 1.492e-154 (7.21e+156) |
194 | calc Q_{(1)c,(3)cb->P;(5)} -> CP{kt=32.8,op=2.685e+78,x=0.4534,k=0} |
195 | p_{(1)} = (-49.46,-0,-0,49.46) (601,0) |
196 | p_{(3)} = (25.72,25.05,0.2002,-5.829) (0,601) |
197 | p_{(5)} = (18.36,-9.364,-3.458,-15.4) (0,603) |
198 | } |
199 | (1)&(3): c,cb -> Z [1,0] { |
200 | Set fixed n_perp |
201 | calc Q_{(1)c,(3)cb->Z;(0)} -> CP{kt=26.58,op=-1,x=0.641,k=0} |
202 | p_{(1)} = (-49.46,-0,-0,49.46) (601,0) |
203 | p_{(3)} = (25.72,25.05,0.2002,-5.829) (0,601) |
204 | p_{(0)} = (-248.4,-0,-0,-248.4) (0,602) |
205 | Kernel weight [1] ( x = 0.0333 ) { |
206 | (1) c (-49.46,-0,-0,49.46) (601,0) [1|0,0] |
207 | (3) cb (25.72,25.05,0.2002,-5.829) (0,601) [1|0,0] |
208 | (2) u (216.3,-29.61,36.83,211.1) (602,0) [1|0,0] |
209 | } -> w = 8.052e-05 (8.316e+06) |
210 | calc Q_{(1)c,(3)cb->Z;(2)} -> CP{kt=25.88,op=2884,x=0.6597,k=0} |
211 | p_{(1)} = (-49.46,-0,-0,49.46) (601,0) |
212 | p_{(3)} = (25.72,25.05,0.2002,-5.829) (0,601) |
213 | p_{(2)} = (216.3,-29.61,36.83,211.1) (602,0) |
214 | Kernel weight [1] ( x = 0.04012 ) { |
215 | (1) c (-49.46,-0,-0,49.46) (601,0) [1|0,0] |
216 | (3) cb (25.72,25.05,0.2002,-5.829) (0,601) [1|0,0] |
217 | (4) s (37.46,13.93,-33.57,9.064) (603,0) [1|0,0] |
218 | } -> w = 7.609e-05 (5.308e+06) |
219 | calc Q_{(1)c,(3)cb->Z;(4)} -> CP{kt=20.1,op=2304,x=0.7948,k=0} |
220 | p_{(1)} = (-49.46,-0,-0,49.46) (601,0) |
221 | p_{(3)} = (25.72,25.05,0.2002,-5.829) (0,601) |
222 | p_{(4)} = (37.46,13.93,-33.57,9.064) (603,0) |
223 | Kernel weight [1] ( x = 0.02289 ) { |
224 | (1) c (-49.46,-0,-0,49.46) (601,0) [1|0,0] |
225 | (3) cb (25.72,25.05,0.2002,-5.829) (0,601) [1|0,0] |
226 | (5) sb (18.36,-9.364,-3.458,-15.4) (0,603) [1|0,0] |
227 | } -> w = 0.0001824 (5.896e+06) |
228 | calc Q_{(1)c,(3)cb->Z;(5)} -> CP{kt=32.8,op=2428,x=0.4534,k=0} |
229 | p_{(1)} = (-49.46,-0,-0,49.46) (601,0) |
230 | p_{(3)} = (25.72,25.05,0.2002,-5.829) (0,601) |
231 | p_{(5)} = (18.36,-9.364,-3.458,-15.4) (0,603) |
232 | } |
233 | (4)&(5): d,db -> P [1,0] { |
234 | Kernel weight [2] ( x = 0.2397 ) { |
235 | (4) s (37.46,13.93,-33.57,9.064) (603,0) [1|0,0] |
236 | (5) sb (18.36,-9.364,-3.458,-15.4) (0,603) [1|0,0] |
237 | (0) ub (-248.4,-0,-0,-248.4) (0,602) [1|0,0] |
238 | } -> w = 0.0001891 (2.209e+06) |
239 | calc Q_{(4)s,(5)sb->P;(0)} -> CP{kt=20.44,op=1486,x=0.9455,k=0} |
240 | p_{(4)} = (37.46,13.93,-33.57,9.064) (603,0) |
241 | p_{(5)} = (18.36,-9.364,-3.458,-15.4) (0,603) |
242 | p_{(0)} = (-248.4,-0,-0,-248.4) (0,602) |
243 | Kernel weight [2] ( x = 0.03312 ) { |
244 | (4) s (37.46,13.93,-33.57,9.064) (603,0) [1|0,0] |
245 | (5) sb (18.36,-9.364,-3.458,-15.4) (0,603) [1|0,0] |
246 | (1) c (-49.46,-0,-0,49.46) (601,0) [1|0,0] |
247 | } -> w = 1.492e-154 (6.33e+155) |
248 | calc Q_{(4)s,(5)sb->P;(1)} -> CP{kt=9.717,op=7.956e+77,x=0.6561,k=0} |
249 | p_{(4)} = (37.46,13.93,-33.57,9.064) (603,0) |
250 | p_{(5)} = (18.36,-9.364,-3.458,-15.4) (0,603) |
251 | p_{(1)} = (-49.46,-0,-0,49.46) (601,0) |
252 | Kernel weight [0] ( x = 1 ) { |
253 | (4) s (37.46,13.93,-33.57,9.064) (603,0) [1|0,0] |
254 | (5) sb (18.36,-9.364,-3.458,-15.4) (0,603) [1|0,0] |
255 | (2) u (216.3,-29.61,36.83,211.1) (602,0) [1|0,0] |
256 | } -> w = 0.0008053 (5.211e+05) |
257 | calc Q_{(4)s,(5)sb->P;(2)} -> CP{kt=20.49,op=721.9,x=1,k=0} |
258 | p_{(4)} = (37.46,13.93,-33.57,9.064) (603,0) |
259 | p_{(5)} = (18.36,-9.364,-3.458,-15.4) (0,603) |
260 | p_{(2)} = (216.3,-29.61,36.83,211.1) (602,0) |
261 | Kernel weight [0] ( x = 1 ) { |
262 | (4) s (37.46,13.93,-33.57,9.064) (603,0) [1|0,0] |
263 | (5) sb (18.36,-9.364,-3.458,-15.4) (0,603) [1|0,0] |
264 | (3) cb (25.72,25.05,0.2002,-5.829) (0,601) [1|0,0] |
265 | } -> w = 0.0005148 (8.158e+05) |
266 | calc Q_{(4)s,(5)sb->P;(3)} -> CP{kt=20.49,op=903.2,x=1,k=0} |
267 | p_{(4)} = (37.46,13.93,-33.57,9.064) (603,0) |
268 | p_{(5)} = (18.36,-9.364,-3.458,-15.4) (0,603) |
269 | p_{(3)} = (25.72,25.05,0.2002,-5.829) (0,601) |
270 | } |
271 | (4)&(5): d,db -> Z [1,0] { |
272 | Kernel weight [2] ( x = 0.2397 ) { |
273 | (4) s (37.46,13.93,-33.57,9.064) (603,0) [1|0,0] |
274 | (5) sb (18.36,-9.364,-3.458,-15.4) (0,603) [1|0,0] |
275 | (0) ub (-248.4,-0,-0,-248.4) (0,602) [1|0,0] |
276 | } -> w = 7.519e-05 (5.555e+06) |
277 | calc Q_{(4)s,(5)sb->Z;(0)} -> CP{kt=20.44,op=2357,x=0.9455,k=0} |
278 | p_{(4)} = (37.46,13.93,-33.57,9.064) (603,0) |
279 | p_{(5)} = (18.36,-9.364,-3.458,-15.4) (0,603) |
280 | p_{(0)} = (-248.4,-0,-0,-248.4) (0,602) |
281 | Kernel weight [2] ( x = 0.03312 ) { |
282 | (4) s (37.46,13.93,-33.57,9.064) (603,0) [1|0,0] |
283 | (5) sb (18.36,-9.364,-3.458,-15.4) (0,603) [1|0,0] |
284 | (1) c (-49.46,-0,-0,49.46) (601,0) [1|0,0] |
285 | } -> w = 1.492e-154 (6.33e+155) |
286 | calc Q_{(4)s,(5)sb->Z;(1)} -> CP{kt=9.717,op=7.956e+77,x=0.6561,k=0} |
287 | p_{(4)} = (37.46,13.93,-33.57,9.064) (603,0) |
288 | p_{(5)} = (18.36,-9.364,-3.458,-15.4) (0,603) |
289 | p_{(1)} = (-49.46,-0,-0,49.46) (601,0) |
290 | Kernel weight [0] ( x = 1 ) { |
291 | (4) s (37.46,13.93,-33.57,9.064) (603,0) [1|0,0] |
292 | (5) sb (18.36,-9.364,-3.458,-15.4) (0,603) [1|0,0] |
293 | (2) u (216.3,-29.61,36.83,211.1) (602,0) [1|0,0] |
294 | } -> w = 0.0003202 (1.311e+06) |
295 | calc Q_{(4)s,(5)sb->Z;(2)} -> CP{kt=20.49,op=1145,x=1,k=0} |
296 | p_{(4)} = (37.46,13.93,-33.57,9.064) (603,0) |
297 | p_{(5)} = (18.36,-9.364,-3.458,-15.4) (0,603) |
298 | p_{(2)} = (216.3,-29.61,36.83,211.1) (602,0) |
299 | calc Q_{(4)s,(5)sb->Z;(3)} -> CP{kt=1.158e+77,op=-1,x=0,k=0} |
300 | p_{(4)} = (37.46,13.93,-33.57,9.064) (603,0) |
301 | p_{(5)} = (18.36,-9.364,-3.458,-15.4) (0,603) |
302 | p_{(3)} = (25.72,25.05,0.2002,-5.829) (0,601) |
303 | } |
304 | (0)&(2): u,u -> P [1,0] { |
305 | Set fixed n_perp |
306 | Kernel weight [3] ( x = 0.022 ) { |
307 | (0) ub (-248.4,-0,-0,-248.4) (0,602) [1|0,0] |
308 | (2) u (216.3,-29.61,36.83,211.1) (602,0) [1|0,0] |
309 | (1) c (-49.46,-0,-0,49.46) (601,0) [1|0,0] |
310 | } -> w = 1.492e-154 (1.589e+157) |
311 | calc Q_{(0)ub,(2)u->P;(1)} -> CP{kt=48.69,op=3.986e+78,x=0.08681,k=0} |
312 | p_{(0)} = (-248.4,-0,-0,-248.4) (0,602) |
313 | p_{(2)} = (216.3,-29.61,36.83,211.1) (602,0) |
314 | p_{(1)} = (-49.46,-0,-0,49.46) (601,0) |
315 | Kernel weight [1] ( x = 0.04456 ) { |
316 | (0) ub (-248.4,-0,-0,-248.4) (0,602) [1|0,0] |
317 | (2) u (216.3,-29.61,36.83,211.1) (602,0) [1|0,0] |
318 | (3) cb (25.72,25.05,0.2002,-5.829) (0,601) [1|0,0] |
319 | } -> w = 1.492e-154 (1.434e+157) |
320 | calc Q_{(0)ub,(2)u->P;(3)} -> CP{kt=46.26,op=3.787e+78,x=0.1758,k=0} |
321 | p_{(0)} = (-248.4,-0,-0,-248.4) (0,602) |
322 | p_{(2)} = (216.3,-29.61,36.83,211.1) (602,0) |
323 | p_{(3)} = (25.72,25.05,0.2002,-5.829) (0,601) |
324 | Kernel weight [1] ( x = 0.01555 ) { |
325 | (0) ub (-248.4,-0,-0,-248.4) (0,602) [1|0,0] |
326 | (2) u (216.3,-29.61,36.83,211.1) (602,0) [1|0,0] |
327 | (4) s (37.46,13.93,-33.57,9.064) (603,0) [1|0,0] |
328 | } -> w = 1.492e-154 (1.634e+157) |
329 | calc Q_{(0)ub,(2)u->P;(4)} -> CP{kt=49.36,op=4.042e+78,x=0.06135,k=0} |
330 | p_{(0)} = (-248.4,-0,-0,-248.4) (0,602) |
331 | p_{(2)} = (216.3,-29.61,36.83,211.1) (602,0) |
332 | p_{(4)} = (37.46,13.93,-33.57,9.064) (603,0) |
333 | Kernel weight [1] ( x = 0.06834 ) { |
334 | (0) ub (-248.4,-0,-0,-248.4) (0,602) [1|0,0] |
335 | (2) u (216.3,-29.61,36.83,211.1) (602,0) [1|0,0] |
336 | (5) sb (18.36,-9.364,-3.458,-15.4) (0,603) [1|0,0] |
337 | } -> w = 1.492e-154 (1.271e+157) |
338 | calc Q_{(0)ub,(2)u->P;(5)} -> CP{kt=43.54,op=3.565e+78,x=0.2696,k=0} |
339 | p_{(0)} = (-248.4,-0,-0,-248.4) (0,602) |
340 | p_{(2)} = (216.3,-29.61,36.83,211.1) (602,0) |
341 | p_{(5)} = (18.36,-9.364,-3.458,-15.4) (0,603) |
342 | } |
343 | (0)&(2): u,u -> Z [1,0] { |
344 | calc Q_{(0)ub,(2)u->Z;(1)} -> CP{kt=1.158e+77,op=-1,x=0,k=0} |
345 | p_{(0)} = (-248.4,-0,-0,-248.4) (0,602) |
346 | p_{(2)} = (216.3,-29.61,36.83,211.1) (602,0) |
347 | p_{(1)} = (-49.46,-0,-0,49.46) (601,0) |
348 | Kernel weight [1] ( x = 0.04456 ) { |
349 | (0) ub (-248.4,-0,-0,-248.4) (0,602) [1|0,0] |
350 | (2) u (216.3,-29.61,36.83,211.1) (602,0) [1|0,0] |
351 | (3) cb (25.72,25.05,0.2002,-5.829) (0,601) [1|0,0] |
352 | } -> w = 0.003251 (6.581e+05) |
353 | calc Q_{(0)ub,(2)u->Z;(3)} -> CP{kt=46.26,op=811.2,x=0.1758,k=0} |
354 | p_{(0)} = (-248.4,-0,-0,-248.4) (0,602) |
355 | p_{(2)} = (216.3,-29.61,36.83,211.1) (602,0) |
356 | p_{(3)} = (25.72,25.05,0.2002,-5.829) (0,601) |
357 | Set fixed n_perp |
358 | Kernel weight [1] ( x = 0.01555 ) { |
359 | (0) ub (-248.4,-0,-0,-248.4) (0,602) [1|0,0] |
360 | (2) u (216.3,-29.61,36.83,211.1) (602,0) [1|0,0] |
361 | (4) s (37.46,13.93,-33.57,9.064) (603,0) [1|0,0] |
362 | } -> w = 0.01009 (2.416e+05) |
363 | calc Q_{(0)ub,(2)u->Z;(4)} -> CP{kt=49.36,op=491.5,x=0.06135,k=0} |
364 | p_{(0)} = (-248.4,-0,-0,-248.4) (0,602) |
365 | p_{(2)} = (216.3,-29.61,36.83,211.1) (602,0) |
366 | p_{(4)} = (37.46,13.93,-33.57,9.064) (603,0) |
367 | Kernel weight [1] ( x = 0.06834 ) { |
368 | (0) ub (-248.4,-0,-0,-248.4) (0,602) [1|0,0] |
369 | (2) u (216.3,-29.61,36.83,211.1) (602,0) [1|0,0] |
370 | (5) sb (18.36,-9.364,-3.458,-15.4) (0,603) [1|0,0] |
371 | } -> w = 0.001986 (9.546e+05) |
372 | calc Q_{(0)ub,(2)u->Z;(5)} -> CP{kt=43.54,op=977,x=0.2696,k=0} |
373 | p_{(0)} = (-248.4,-0,-0,-248.4) (0,602) |
374 | p_{(2)} = (216.3,-29.61,36.83,211.1) (602,0) |
375 | p_{(5)} = (18.36,-9.364,-3.458,-15.4) (0,603) |
376 | } |
377 | } |
378 | combine (0) -> (0,2)&(2) |
379 | } step = 2 |
380 | Cluster_Algorithm::ClusterStep(): step = 3 { |
381 | Cluster_Algorithm::CalculateMeasures(): { |
382 | (1)&(3): c,cb -> P [1,0] { |
383 | Set fixed n_perp |
384 | Kernel weight [1] ( x = nan ) { |
385 | (1) c (-49.4648908049,-0,-0,49.4648908049) (601,0) [1|0,0] |
386 | (3) cb (nan,nan,nan,nan) (0,601) [1|0,0] |
387 | (4) s (nan,nan,nan,nan) (603,0) [1|0,0] |
388 | } -> w = 1.49166814624e-154 (nan) |
389 | calc Q_{(1)c,(3)cb->P;(4)} -> CP{kt=nan,op=nan,x=nan,k=0} |
390 | p_{(1)} = (-49.4648908049,-0,-0,49.4648908049) (601,0) |
391 | p_{(3)} = (nan,nan,nan,nan) (0,601) |
392 | p_{(4)} = (nan,nan,nan,nan) (603,0) |
393 | Set fixed n_perp |
394 | Kernel weight [1] ( x = nan ) { |
395 | (1) c (-49.4648908049,-0,-0,49.4648908049) (601,0) [1|0,0] |
396 | (3) cb (nan,nan,nan,nan) (0,601) [1|0,0] |
397 | (5) sb (nan,nan,nan,nan) (0,603) [1|0,0] |
398 | } -> w = 1.49166814624e-154 (nan) |
399 | calc Q_{(1)c,(3)cb->P;(5)} -> CP{kt=nan,op=nan,x=nan,k=0} |
400 | p_{(1)} = (-49.4648908049,-0,-0,49.4648908049) (601,0) |
401 | p_{(3)} = (nan,nan,nan,nan) (0,601) |
402 | p_{(5)} = (nan,nan,nan,nan) (0,603) |
403 | } |
404 | (1)&(3): c,cb -> Z [1,0] { |
405 | Set fixed n_perp |
406 | Kernel weight [1] ( x = nan ) { |
407 | (1) c (-49.4648908049,-0,-0,49.4648908049) (601,0) [1|0,0] |
408 | (3) cb (nan,nan,nan,nan) (0,601) [1|0,0] |
409 | (4) s (nan,nan,nan,nan) (603,0) [1|0,0] |
410 | } -> w = 1.49166814624e-154 (nan) |
411 | calc Q_{(1)c,(3)cb->Z;(4)} -> CP{kt=nan,op=nan,x=nan,k=0} |
412 | p_{(1)} = (-49.4648908049,-0,-0,49.4648908049) (601,0) |
413 | p_{(3)} = (nan,nan,nan,nan) (0,601) |
414 | p_{(4)} = (nan,nan,nan,nan) (603,0) |
415 | Set fixed n_perp |
416 | Kernel weight [1] ( x = nan ) { |
417 | (1) c (-49.4648908049,-0,-0,49.4648908049) (601,0) [1|0,0] |
418 | (3) cb (nan,nan,nan,nan) (0,601) [1|0,0] |
419 | (5) sb (nan,nan,nan,nan) (0,603) [1|0,0] |
420 | } -> w = 1.49166814624e-154 (nan) |
421 | calc Q_{(1)c,(3)cb->Z;(5)} -> CP{kt=nan,op=nan,x=nan,k=0} |
422 | p_{(1)} = (-49.4648908049,-0,-0,49.4648908049) (601,0) |
423 | p_{(3)} = (nan,nan,nan,nan) (0,601) |
424 | p_{(5)} = (nan,nan,nan,nan) (0,603) |
425 | } |
426 | (4)&(5): d,db -> P [1,0] { |
427 | Set fixed n_perp |
428 | Kernel weight [2] ( x = nan ) { |
429 | (4) s (nan,nan,nan,nan) (603,0) [1|0,0] |
430 | (5) sb (nan,nan,nan,nan) (0,603) [1|0,0] |
431 | (1) c (-49.4648908049,-0,-0,49.4648908049) (601,0) [1|0,0] |
432 | } -> w = 1.49166814624e-154 (nan) |
433 | calc Q_{(4)s,(5)sb->P;(1)} -> CP{kt=nan,op=nan,x=nan,k=0} |
434 | p_{(4)} = (nan,nan,nan,nan) (603,0) |
435 | p_{(5)} = (nan,nan,nan,nan) (0,603) |
436 | p_{(1)} = (-49.4648908049,-0,-0,49.4648908049) (601,0) |
437 | Set fixed n_perp |
438 | Kernel weight [0] ( x = 1 ) { |
439 | (4) s (nan,nan,nan,nan) (603,0) [1|0,0] |
440 | (5) sb (nan,nan,nan,nan) (0,603) [1|0,0] |
441 | (3) cb (nan,nan,nan,nan) (0,601) [1|0,0] |
442 | } -> w = 1.49166814624e-154 (nan) |
443 | calc Q_{(4)s,(5)sb->P;(3)} -> CP{kt=nan,op=nan,x=1,k=0} |
444 | p_{(4)} = (nan,nan,nan,nan) (603,0) |
445 | p_{(5)} = (nan,nan,nan,nan) (0,603) |
446 | p_{(3)} = (nan,nan,nan,nan) (0,601) |
447 | } |
448 | (4)&(5): d,db -> Z [1,0] { |
449 | Set fixed n_perp |
450 | Kernel weight [2] ( x = nan ) { |
451 | (4) s (nan,nan,nan,nan) (603,0) [1|0,0] |
452 | (5) sb (nan,nan,nan,nan) (0,603) [1|0,0] |
453 | (1) c (-49.4648908049,-0,-0,49.4648908049) (601,0) [1|0,0] |
454 | } -> w = 1.49166814624e-154 (nan) |
455 | calc Q_{(4)s,(5)sb->Z;(1)} -> CP{kt=nan,op=nan,x=nan,k=0} |
456 | p_{(4)} = (nan,nan,nan,nan) (603,0) |
457 | p_{(5)} = (nan,nan,nan,nan) (0,603) |
458 | p_{(1)} = (-49.4648908049,-0,-0,49.4648908049) (601,0) |
459 | Set fixed n_perp |
460 | Kernel weight [0] ( x = 1 ) { |
461 | (4) s (nan,nan,nan,nan) (603,0) [1|0,0] |
462 | (5) sb (nan,nan,nan,nan) (0,603) [1|0,0] |
463 | (3) cb (nan,nan,nan,nan) (0,601) [1|0,0] |
464 | } -> w = 1.49166814624e-154 (nan) |
465 | calc Q_{(4)s,(5)sb->Z;(3)} -> CP{kt=nan,op=nan,x=1,k=0} |
466 | p_{(4)} = (nan,nan,nan,nan) (603,0) |
467 | p_{(5)} = (nan,nan,nan,nan) (0,603) |
468 | p_{(3)} = (nan,nan,nan,nan) (0,601) |
469 | } |
470 | (0,2)&(4): Z,d -> db [1,0] { |
471 | Set fixed n_perp |
472 | Kernel weight [3] ( x = nan ) { |
473 | (0,2) Z (-91.188,0,0,nan) (0,0) [0|0,0] <-> (4) |
474 | (4) s (nan,nan,nan,nan) (603,0) [1|0,0] |
475 | (1) c (-49.4648908049,-0,-0,49.4648908049) (601,0) [1|0,0] |
476 | } -> w = 1.49166814624e-154 (nan) |
477 | calc Q_{(0,2)Z,(4)s->s;(1)} -> CP{kt=nan,op=nan,x=nan,k=0} |
478 | p_{(0,2)} = (-91.188,0,0,nan) (0,0) |
479 | p_{(4)} = (nan,nan,nan,nan) (603,0) |
480 | p_{(1)} = (-49.4648908049,-0,-0,49.4648908049) (601,0) |
481 | Set fixed n_perp |
482 | Kernel weight [1] ( x = nan ) { |
483 | (0,2) Z (-91.188,0,0,nan) (0,0) [0|0,0] <-> (4) |
484 | (4) s (nan,nan,nan,nan) (603,0) [1|0,0] |
485 | (5) sb (nan,nan,nan,nan) (0,603) [1|0,0] |
486 | } -> w = 1.49166814624e-154 (nan) |
487 | calc Q_{(0,2)Z,(4)s->s;(5)} -> CP{kt=nan,op=nan,x=nan,k=0} |
488 | p_{(0,2)} = (-91.188,0,0,nan) (0,0) |
489 | p_{(4)} = (nan,nan,nan,nan) (603,0) |
490 | p_{(5)} = (nan,nan,nan,nan) (0,603) |
491 | } |
492 | (0,2)&(5): Z,db -> d [1,0] { |
493 | Set fixed n_perp |
494 | Kernel weight [1] ( x = nan ) { |
495 | (0,2) Z (-91.188,0,0,nan) (0,0) [0|0,0] <-> (4) |
496 | (5) sb (nan,nan,nan,nan) (0,603) [1|0,0] |
497 | (3) cb (nan,nan,nan,nan) (0,601) [1|0,0] |
498 | } -> w = 1.49166814624e-154 (nan) |
499 | calc Q_{(0,2)Z,(5)sb->sb;(3)} -> CP{kt=nan,op=nan,x=nan,k=0} |
500 | p_{(0,2)} = (-91.188,0,0,nan) (0,0) |
501 | p_{(5)} = (nan,nan,nan,nan) (0,603) |
502 | p_{(3)} = (nan,nan,nan,nan) (0,601) |
503 | Set fixed n_perp |
504 | Kernel weight [1] ( x = nan ) { |
505 | (0,2) Z (-91.188,0,0,nan) (0,0) [0|0,0] <-> (4) |
506 | (5) sb (nan,nan,nan,nan) (0,603) [1|0,0] |
507 | (4) s (nan,nan,nan,nan) (603,0) [1|0,0] |
508 | } -> w = 1.49166814624e-154 (nan) |
509 | calc Q_{(0,2)Z,(5)sb->sb;(4)} -> CP{kt=nan,op=nan,x=nan,k=0} |
510 | p_{(0,2)} = (-91.188,0,0,nan) (0,0) |
511 | p_{(5)} = (nan,nan,nan,nan) (0,603) |
512 | p_{(4)} = (nan,nan,nan,nan) (603,0) |
513 | } |
514 | (0,2)&(3): Z,cb -> c [1,0] { |
515 | Set fixed n_perp |
516 | Kernel weight [3] ( x = nan ) { |
517 | (0,2) Z (-91.188,0,0,nan) (0,0) [0|0,0] <-> (4) |
518 | (3) cb (nan,nan,nan,nan) (0,601) [1|0,0] |
519 | (1) c (-49.4648908049,-0,-0,49.4648908049) (601,0) [1|0,0] |
520 | } -> w = 1.49166814624e-154 (nan) |
521 | calc Q_{(0,2)Z,(3)cb->cb;(1)} -> CP{kt=nan,op=nan,x=nan,k=0} |
522 | p_{(0,2)} = (-91.188,0,0,nan) (0,0) |
523 | p_{(3)} = (nan,nan,nan,nan) (0,601) |
524 | p_{(1)} = (-49.4648908049,-0,-0,49.4648908049) (601,0) |
525 | Set fixed n_perp |
526 | Kernel weight [1] ( x = nan ) { |
527 | (0,2) Z (-91.188,0,0,nan) (0,0) [0|0,0] <-> (4) |
528 | (3) cb (nan,nan,nan,nan) (0,601) [1|0,0] |
529 | (5) sb (nan,nan,nan,nan) (0,603) [1|0,0] |
530 | } -> w = 1.49166814624e-154 (nan) |
531 | calc Q_{(0,2)Z,(3)cb->cb;(5)} -> CP{kt=nan,op=nan,x=nan,k=0} |
532 | p_{(0,2)} = (-91.188,0,0,nan) (0,0) |
533 | p_{(3)} = (nan,nan,nan,nan) (0,601) |
534 | p_{(5)} = (nan,nan,nan,nan) (0,603) |
535 | } |
536 | (0,2)&(4): Z,d -> db [1,0] { |
537 | } |
538 | (0,2)&(5): Z,db -> d [1,0] { |
539 | } |
540 | (0,2)&(3): Z,cb -> c [1,0] { |
541 | } |
542 | } |
543 | Sherpa: Cluster_Algorithm::ClusterStep throws fatal error: |
544 | Invalid amplitude |
545 | Exception_Handler::GenerateStackTrace(..): Generating stack trace |
546 | { |
547 | 0x2b3c9a4b0774 in 'ATOOLS::Exception_Handler::GenerateStackTrace(std::ostream&, bool, std::string const&)' (Exception_Handler.C:314) |
548 | from '/mt/data-grid/fsiegert/sl4/sherpa/trunk/lib/SHERPA-MC/libToolsOrg.so.0' |
549 | 0x2b3c9a4b18be in 'ATOOLS::Exception_Handler::Terminate()' (basic_string.h:283) |
550 | from '/mt/data-grid/fsiegert/sl4/sherpa/trunk/lib/SHERPA-MC/libToolsOrg.so.0' |
551 | 0x2b3c9a4b2840 in 'ATOOLS::Terminate()' (Exception_Handler.C:131) |
552 | from '/mt/data-grid/fsiegert/sl4/sherpa/trunk/lib/SHERPA-MC/libToolsOrg.so.0' |
553 | 0x40b27a in 'main' (basic_string.h:232) |
554 | from '/mt/data-grid/fsiegert/sl4/sherpa/trunk/bin/Sherpa' |
555 | } |
556 | Exception_Handler::Terminate(): Pre-crash status saved to '/mt/data-grid/fsiegert/sl4/sherpa/benchmark/PL_YJETS/test/Status__Thu_Mar_11_17-58-55_2010'. |
557 | Exception_Handler::ApproveTerminate(): Asking for termination ... |
558 | ... approved. |
559 | Exception_Handler::PrepareTerminate(): Preparing termination ... |
560 | In Event_Handler::Finish : Summarizing the run may take some time. |
561 | +---------------------------------------------------+ |
562 | | | |
563 | | Total XS is nan pb +- ( 0 pb = -2.14748e+07 % ) | |
564 | | | |
565 | +---------------------------------------------------+ |
566 | ... prepared. |
567 | Exception_Handler::Exit: Exiting Sherpa with code (1) |
568 | Return_Value::PrintStatistics(): Statistics { |
569 | Generated events: 1 |
570 | } |
571 | Time: 3m 6s on Thu Mar 11 17:58:55 2010 |
572 | (User: 3m 2s, System: 1s, Children User: 0s, Children System: 0s) |
573 | ------------------------------------------------------------------------ |
574 | Please cite the publications listed in 'Sherpa_References.tex'. |
575 | Extract the bibtex list by running 'get_bibtex Sherpa_References.tex' |
576 | or email the file to 'slaclib2@slac.stanford.edu', subject 'generate'. |
577 | ------------------------------------------------------------------------ |