
Scale depedence in SHERPA

This manual describes the usage of both precalculated alternative event weights in SHERPA and the usage of
the weight components written to SHERPA’s HepMC event record [1] to carry out an a posteriori scale variation
to arbitrary scales. The following is applicable to SHERPA-2.2.0 [2, 3].

1 Precalculated alternative event weights

1.1 Specifiying automatically calculated scale variations

SHERPA provides a list of precalculated alternative event weights, if asked for it. They correspond to the
would-be weights had the nominal scale been multiplied by a given factor or a different, specified parton
distribution function be used. The syntax to which alternative event weights SHERPA should provide is the
following

SCALE_VARIATIONS <muR2-fac1>,<muF2-fac1>,<PDF1> <muR2-fac2>,<muF2-fac2>,<PDF2> ...;

Each alternative event weight is characterised through

<muR2-fac> a prefactor multiplying the nominal (squared) renormalisation scale

<muF2-fac> a prefactor multiplying the nominal (squared) factorisation scales

<PDF> a parton density and its accompanying αs parametrisation.

This syntax works for all employed scale setters of SHERPA and both SHERPA’s internal PDFs and PDFs
interfaced through LHAPDF5/6.

To specify a specific member of a PDF, its number is given as an additional argument separated by a slash.
Thus, CT10nlo/38 asks for the 38th member of the CT10nlo PDF set. SHERPA can also be asked to perform
the calculations for a full PDF set using the suffix [all]. Hence, CT10nlo[all] is equivalent to specifying
all members, CT10nlo/0, CT10nlo/1, . . . , CT10nlo/52, separately. The [all]-notation only works with
PDFs interfaced through LHAPDF6 [4].

The following short-hands for most practical purposes exist.

• SCALE_VARIATIONS <muR2-fac1>,<muF2-fac1> <muR2-fac2>,<muF2-fac2> ...;

This short-hand notation only varies the prefactors of the nominal renormalisation and factorisation
scales. The nominal PDF will be used.

• PDF_VARIATIONS <PDF1> <PDF2> ...;

This short-hand notation only varies the PDFs used in calculating the alternative weights, including
their respective αs parametrisations. The renormalisation and factorisation prefactors are kept at
unity.

Thus, a complete variation using the PDF4LHC convention would read

SCALE_VARIATIONS 0.25,0.25 0.25,1. 1.,0.25 1.,1. 1.,4. 4.,1. 4.,4.;

PDF_VARIATIONS CT10nlo[all] MMHT2014nlo68cl[all] NNPDF30_nlo_as_0118[all];

Please note again, scales are defined as squares in SHERPA. The above syntax will create 7+53+51+101 = 212
additional weights for each event.



1.2 Using the entries of the HepMC::WeightContainer

The automatically calculcaled alternative event weights are appended to the HepMC::WeightContainter.
Their names follow the Les Houches convention [5], i.e. are of the form MUR<fac> MUF<fac> PDF<id>.
Therein, <fac> are the (non-quadratic) prefactors for the renormalisation and factorisation scales relative
to the nominal one and <id> is the integer LHAPDF [4, 6] PDF set member identifier.

In an analysis, the histograms can then be filled with the respective weight entry. The normalisation of this
observable is then

〈O〉MUR<fac> MUF<fac> PDF<id> =
1

Ntrial

n∑
i

wMUR<fac> MUF<fac> PDF<id>
i (Φ)O(Φ) (1.1)

where in wMUR<fac> MUF<fac> PDF<id>
i (Φ) is the weight of the phase space configuration Φ for variation MUR<fac>

MUF<fac> PDF<id> and O(Φ) is the value of the observable for Φ. Ntrial =
∑n
i ntrial i wherefore ntrial i can

be extracted from the HepMC::WeightContainer entry NTrial for each event. In other words, the sum of
weights needs to be rescaled by the number Ntrial.

In case of unweighted event generation, i.e. event generation where all events carry a uniform weight, this is
by default fixed such that eq. (1.1) holds. If instead a uniform weight of 1 for the nominal scale and PDF
choice is desired, each event’s weight should be rescaled by wnorm, the value of the HepMC::WeightContainer
entry WeightNorm. The expectation value of an observable is then given by

〈O〉MUR<fac> MUF<fac> PDF<id> =
wnorm

Ntrial

n∑
i

wMUR<fac> MUF<fac> PDF<id>
i (Φ)

wnorm
O(Φ) . (1.2)

Of course, all alternative event weights also must be rescaled by the same value wnorm, resulting in, then
potentially non-uniform, event weights ∼ 1. For the nominal sample, where all event weights are equal to
wnorm, this simplifies to

〈O〉MUR1 MUF1 PDF<default> =
wnorm

Ntrial

n∑
i

O(Φ) = σMUR1 MUF1 PDF<default>
incl N̄O , (1.3)

where N̄O = 1
n NO is the avarage and NO the total number of events passing the definition of the observable

O. While eq. (1.3) is widely used it is applicable only to events of strictly uniform weight. In all other
cases, i.e. when using partially unweighted events, be it due to the specification of Enhance Factor or
Enhance Observable or allowing events to exceed the predetermined maximum wnorm, the use of eq. (1.1)
or (1.2) is mandatory.
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2 User calculated alternative event weights

Events generated by SHERPA and written to HepMC can also be manually reweighted to any alternative
renormalisation and factorisation scale choice. To this end, however, additional information, depending on
the event type, is needed. Setting HEPMC EXTENDED WEIGHTS=1 adds the building blocks needed for such
variations to the events written to file while USE HEPMC EXTENDED WEIGHTS 1 needs to be specified in its
analysis block if this information is needed in the HepMC events passed as objects to Rivet through the
internal Rivet interface. These additional building blocks are added to the HepMC::WeightContainer as
named entries, thus at least HepMC-2.06 is required.

As different event types require different methods of computing the alternative event weight the HepMC::WeightContainer
contains the following entry

Variable Name of HepMC::WeightContainer entry
Ntype Reweight Type

It can take the following values, directly encoding which type of reweighting must be performed.

Value of Ntype Type Present in Cf. section
0 LO LO, LOPS Sec. 2.1
1 B NLO, NLOPS, MEPS@NLO Sec. 2.2.1, 2.2.2, ??
2 VI NLO, NLOPS, MEPS@NLO Sec. 2.2.1, 2.2.2, ??
4 KP NLO, NLOPS, MEPS@NLO Sec. 2.2.1, 2.2.2, ??
8 DADS NLOPS, MEPS@NLO Sec. 2.2.2, ??
16 ClusterSteps MEPS@LO, MEPS@NLO Sec. 2.3, ??
32 H-Event NLOPS, MEPS@NLO Sec. 2.2.2, ??
64 RS NLO Sec. 2.2.1

The types are additive and mutliple reweighting types can be needed for one event. Only the therefor
required building blocks are the present in the HepMC-WeightContainer.

A few examples:

• A MEPS@LO event has Ntype = 16.

• A S–MC@NLO S-Event, cf. Sec. 2.2.2, the reweighting type is thus Ntype = 15. Hence, the event weight
contains pieces that transform B-like, VI-like, KP-like and DADS-like when shifting the renormalisation
and/or factorisation scales and the corresponding information is be present in the HepMC::WeightContainer.

• A S–MC@NLO H-Event has Ntype = 32.

• A MEPS@NLO S-Event has Ntype = 31.

• A MEPS@NLO H-Event has Ntype = 48.

• A fixed-order NLO virtual correction event has Ntype = 2.

• A fixed-order NLO integrated subtraction event has Ntype = 6.

• A fixed-order NLO real minus real subtraction event has Ntype = 64.

Please note that whereas for all Reweight Type a summation over all components computes the new weight
of the given event, fixed-order NLO real minus real subtraction events, Ntype = 64, also entails the summing
over multiple correlated events which can be identified by carrying the same event number.
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2.1 LO and LOPS

A leading order parton level calculation with Born matrix elements at O(αnsα
myk) has the following explicit

renormalisation (µR) and factorisation (µF,a/b) scale dependences:

〈O〉LO =

∫
dΦB B(ΦB ;αs, α, y;µR, µF,a/b) O(ΦB)

= lim
N→∞

1

Ntrial

N∑
i

B(ΦB,i;αs, α, y;µR, µF,a/b) O(ΦB,i)

(2.1)

with Ntrial =
∑N
i ntrial i and

B(ΦB ;αs, α, y;µR, µF,a/b) = fa(xa, µF,a) fb(xb, µF,b) B′(ΦB ;αs, α, y;µR)

= fa(xa, µF,a) fb(xb, µF,b) α
n
s (µR)αm yk B′′(ΦB) ,

(2.2)

where for now only αs is taken as running. Therein, B is the Born matrix element containing all cou-
plings, symmetry and flux factors, and PDFs. The B′ and B′′ are stripped of the PDFs and the couplings,
respectively. Thus, changeing the scales µR → µ̃R and µF,a/b → µ̃F,a/b results in

B(ΦB ;αs, α, y; µ̃R, µ̃F,a/b) = fa(xa, µ̃F,a) fb(xb, µ̃F,b) α
n
s (µ̃R)αm yk B′′(ΦB)

= fa(xa, µ̃F,a) fb(xb, µ̃F,b)

(
αs(µ̃R)

αs(µR)

)n
B′(ΦB ;αs, α, y;µR)

=
fa(xa, µ̃F,a)

fa(xa, µF,a)

fb(xb, µ̃F,b)

fb(xb, µF,b)

(
αs(µ̃R)

αs(µR)

)n
B(ΦB ;αs, α, y;µR, µF,a/b)

(2.3)

The variation can be computed from either form. In Sherpa’s HepMC event record the second or third form
can be used and respective factors can be accessed in the following way:

Variable Name of HepMC::WeightContainer entry
B(ΦB ;αs, α, y;µR, µF,a/b) Weight

B′(ΦB ;αs, α, y;µR) Reweight B

ntrial NTrial

wnorm WeightNorm

µ2
R MuR2

n OQCD

m+ k OEW

The remaining information, xa, xb, µ
2
F,a, µ2

F,b, αs(µR) and α, can be accessed throught the HepMC::PDFInfo

object and HepMC::GenEvent::alphaQCD/QED(), respectively.

As we do not yet vary the scales in the parton shower, scale variations in LOPS proceed the same way. In
LO or LOPS calculations with the METS scale setter care must be taken and the corresponding MEPS@LO

proceedure must be used as additional terms arise.

For unweighted events B(ΦB ;αs(µR), α, y;µF,a/b) = Bmax = wnorm uniformly for every event. Scale vari-
ations then work the very same way as for weighted events. Of course, applying eq. (2.3) then leads to a
broader weight distribution. Partially unweighted events can be treated on the same footing.
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2.2 NLO and NLOPS

2.2.1 NLO

A fixed-order parton next-to-leading order level calculation at O(αn+1
s αmyk) using Catani-Seymour subtrac-

tion has the following renormalisation (µR) and factorisation (µF ) scale dependences:

〈O〉NLO =

∫
ΦB

{
B(ΦB ;αs, α, y;µR, µF,a/b)

+ VI(ΦB ;αs, α, y;µR, µF,a/b)

+

∫
dx′a/bKP(ΦB , x

′
a/b;αs, α, y;µR, µF,a/b)

}
O(ΦB)

+

∫
ΦR

R(ΦR;αs, α, y;µR, µF,a/b) O(ΦR)

−
∑
j

DS(ΦB,j · ΦjR|B ;αs, α, y;µR,j , µF,j,a/b) O(ΦB,j)


= lim

N→∞

1

Ntrial

{
NB∑
i

{
B(ΦB,i;αs, α, y;µR, µF,a/b) O(ΦB,i)

+ VI(ΦB,i;αs, α, y;µR, µF,a/b) O(ΦB,i)

+ KP(ΦB , x
′
a/b;αs, α, y;µR, µF,a/b)

}
O(ΦB)

+

NR∑
i

R(ΦRi ;αs, α, y;µR, µF,a/b) O(ΦRi)

−
∑
j

DS(ΦB,j,i · ΦjRi|B ;αs, α, y;µR,j , µF,j,a/b) O(ΦB,j,i)

}

(2.4)

For now, the following is restricted to NLO QCD, ie. the Born process is calculated at O(αnsα
myk). The

notation of the previous section is generalised.

While changing the scales µR → µ̃R and µF,i → µ̃F,i in the Born contribution was detailed in Eq. (2.3),
doing so in the other pieces results in

VI(ΦB ;αs, α, y; µ̃R, µ̃F,a/b)

= fa(xa, µ̃F,a) fb(xb, µ̃F,b) α
n+1
s (µ̃R)αm yk

[
VI′′(ΦB) +

1

αn+1
s (µR)

(
c
(0)
R lR + 1

2 c
(1)
R l2R

)]
= fa(xa, µ̃F,a) fb(xb, µ̃F,b)

(
αs(µ̃R)

αs(µR)

)n+1 [
VI′(ΦB ;αs, α, y;µR) + c

(0)
R lR + 1

2 c
(1)
R l2R

]
=
fa(xa, µ̃F,a)

fa(xa, µF,a)

fb(xb, µ̃F,b)

fb(xb, µF,b)

(
αs(µ̃R)

αs(µR)

)n+1 [
VI(ΦB ;αs, α, y;µR, µF,a/b)

+ fa(xa, µF,a) fb(xb, µF,b)
(
c
(0)
R lR + 1

2 c
(1)
R l2R

)]
(2.5)
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with coefficients c
(i)
R and lR = log

µ̃2
R

µ2
R

, and

KP(ΦB , x
′
a/b;αs, α, y; µ̃R, µ̃F,a/b)

=

(
αs(µ̃R)

αs(µR)

)n+1 [
fb(xb, µ̃F,b)

(
fqa c̃

(0)
F,a + fqa(x′a)c̃

(1)
F,a + fga c̃

(2)
F,a + fga (x′a)c̃

(3)
F,a

)
+ fa(xb, µ̃F,b)

(
fqb c̃

(0)
F,b + fqb (x′b)c̃

(1)
F,b + fgb c̃

(2)
F,b + fgb (x′b)c̃

(3)
F,b

)] (2.6)

with c̃
(i)
F,a/b = c

(i)
F,a/b + c

′ (i)
F,a/b lf,a/b for i ∈ {0, . . . , 3}, lf,a/b = log

µ̃2
F,a/b

µ2
F,a/b

, and

c = q c = g

fqc = fc(xc, µ̃F,c) fqc =
∑
q

fq(xc, µ̃F,c)

fqc (x′c) = x′cfc(
xc

x′c
, µ̃F,c) fqc (x′c) = x′c

∑
q

fq(
xc

x′c
, µ̃F,c)

fgc = fg(xc, µ̃F,c) fgc = fg(xc, µ̃F,c)

fgc (x′c) = x′cfg(
xc

x′c
, µ̃F,c) fgc (x′c) = x′cfg(

xc

x′c
, µ̃F,c)

(2.7)

for c = a, b, respectively. The sum over runs over all light quark flavours for gluon initial states. Other

forms for the transformation of KP can be derived, keeping in mind that c
(i)
F,a/b ∝ αn+1

s (µR)αmyk, but the

respective expresssions are not needed here.

Again, using Sherpa’s HepMC event record, for B, VI, R and DS , the second can be used and respective
factors can be accessed in the following way:

Variable Name of HepMC::WeightContainer entry
B′(ΦB ;αs, α, y;µR) Reweight B

VI′(ΦB ;αs, α, y;µR) Reweight VI

KP′(ΦB ;αs, α, y;µR) Reweight KP

R′(ΦR;αs, α, y;µR) Reweight RS

D′S(ΦR;αs, α, y;µR) Reweight RS

ntrial NTrial

µ2
R Reweight MuR2

µ2
F Reweight MuF2

n+ 1 OQCD

m+ k OEW

x′a/b Reweight KP x<1/2>p

c
(i)
R Reweight VI wren <i>

c
(i)
F,a Reweight KP wfac <i>

c
′ (i)
F,a Reweight KP wfac <i+8>

c
(i)
F,b Reweight KP wfac <i+4>

c
′ (i)
F,b Reweight KP wfac <i+12>

As before, the remaining information, xa, xb, µ
2
F,a, µ2

F,b, αs(µR) and α, can be accessed throught the
HepMC::PDFInfo object and HepMC::GenEvent::alphaQCD/QED(), respectively.

2.2.2 NLOPS

A parton shower matched next-to-leading order level calculation at O(αnsα
myk) using Catani-Seymour sub-

traction and the MC@NLO technique has the following renormalisation (µR) and factorisation (µF ) scale
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dependences:

〈O〉NLO =

∫
ΦB

{
B(ΦB ;αs, α, y;µR, µF,a/b)

+ VI(ΦB ;αs, α, y;µR, µF,a/b)

+

∫
dx′a/bKP(ΦB , x

′
a/b;αs, α, y;µR, µF,a/b)

+
∑
i

∫
dΦiR|B

[
DA,i(ΦB · ΦiR|B ;αs, α, y;µR,i, µF,i,a/b)

−DS,i(ΦB · ΦiR|B ;αs, α, y;µR,i, µF,i,a/b)
]}

fMC@NLO
B (O)

+

∫
ΦR

R(ΦR;αs, α, y;µR, µF,a/b)

−
∑
j

DA(ΦB,j · ΦjR|B ;αs, α, y;µR,j , µF,j,a/b)

 fR(O)

=

∫
ΦB

{
B(ΦB ;αs, α, y;µR, µF,a/b)

+ VI(ΦB ;αs, α, y;µR, µF,a/b)

+

∫
dx′a/bKP(ΦB , x

′
a/b;αs, α, y;µR, µF,a/b)

+
∑
j

∫
dΦjR|B

[
DA(ΦB · ΦiR|B ;αs, α, y;µR,i, µF,i,a/b)

−DS(ΦB · ΦiR|B ;αs, α, y;µR,i, µF,i,a/b)
]
i

}
fMC@NLO
B (O)

+

∫
ΦR H(ΦR;αs, α, y; {µR,i}, {µF,i,a/b}) fR(O)

=

∫
ΦB B(ΦB ;αs, α, y;µR, µF,a/b) f

MC@NLO
B (O)

+

∫
ΦR H(ΦR;αs, α, y; {µR,i}, {µF,i,a/b}) fR(O)

= lim
N→∞

1

Ntrial

{
NB∑
i

B(ΦB,i;αs, α, y;µR, µF,a/b) f
MC@NLO
B (O)

+

NR∑
i

H(ΦR;αs, α, y; {µR,i}, {µF,i,a/b}) fR(O)

}

(2.8)

wherein fMC@NLO
B (O) is the MC@NLO shower on ΦB , whose scales are not included in the scale variation.

Similarly, the scales of the standard shower fR(O), effected on ΦR, is not varied.

The variations of B, VI and KP proceeds as before. The [DA −DS ]i terms also transform as the B, ie.

[DA −DS ]i (ΦB · ΦiR|B ;αs, α, y;µR,i, µF,i,a/b)

= fa(xa, µ̃F,a) fb(xb, µ̃F,b) α
n+1
s (µ̃R)αmyk [D′′A −D′′S ]i (ΦB · ΦiR|B)

= fa(xa, µ̃F,a) fb(xb, µ̃F,b)

(
αs(µ̃R)

αs(µR)

)n+1

[D′A −D′S ]i (ΦB · ΦiR|B ;αs, α, y;µR)

=
fa(xa, µ̃F,a)

fa(xa, µF,a)

fb(xb, µ̃F,b)

fb(xb, µF,b)

(
αs(µ̃R)

αs(µR)

)n+1

[DA −DS ]i (ΦB · ΦiR|B ;αs, α, y;µR, µF,a/b)

(2.9)
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It has to be noted that the partonic xa/b of the [DA − DS ] terms are those of the ΦR,i = ΦB · ΦiR|B phase
space, as are the initial state flavours a and b.

Their additional information can accessed in the following way:

Variable Name of HepMC::WeightContainer entry
N[D′A−D′S ] Reweight DADS N

[D′A −D′S ]i(ΦB · ΦiR|B ;αs, α, y;µR) Reweight DADS <i> Weight

xa/b Reweight DADS <i> x<1/2>

a/b Reweight DADS <i> fl<1/2>

Therein, N[D′A−D′S ] denotes the number of [D′A −D′S ]i terms. Please note that Reweight DADS <i> x<1/2>,
Reweight DADS <i> fl<1/2>, Reweight DADS <i> MuR2, Reweight DADS <i> MuF12 and Reweight DADS <i> MuF22

are only present if Reweight DADS <i> Weight takes a non-zero value.

The hard correction event

H(ΦR;αs, α, y; {µR,i}, {µF,i,a/b}) O(ΦR)

=
[
R(ΦR;αs, α, y;µR, µF,a/b)−

∑
i

DA,j(ΦB,j,i · ΦjR|B,i;αs, α, y;µR,j , µF,j,a/b)
]
O(ΦR) (2.10)

is a multiscale quantity whose components transform as in the leading order case. Its information can be
accessed as in the LO/LOPS case of Sec. 2.1, ie.

Variable Name of HepMC::WeightContainer entry
H(ΦR;αs, α, y;µR, µF,a/b) Weight

H′(ΦR;αs, α, y;µR) Reweight B

NRDA
Reweight RDA N

D′A,i(ΦR;αs, α, y;µR,j) Reweight RDA <i> Weight

µ2
R,i Reweight RDA <i> MuR2

µ2
F,i,a Reweight RDA <i> MuF12

µ2
F,i,b Reweight RDA <i> MuF22

i, j, k Reweight RDA <i> Dipole

R′(ΦR;αs, α, y;µR,real) Reweight RDA <NRDA
− 1> Weight

µ2
R,real Reweight RDA <NRDA

− 1> MuR2

µ2
F,real,a Reweight RDA <NRDA

− 1> MuF12

µ2
F,real,b Reweight RDA <NRDA

− 1> MuF22

ntrial NTrial

wnorm WeightNorm

n OQCD

m+ k OEW

Please note that value of the real emission quantities are in the last entry. The remaining information, xa, xb,
αs(µR) and α, can be accessed throught the HepMC::PDFInfo object and HepMC::GenEvent::alphaQCD/QED(),
respectively. Please note, that as all components share the same phase space point ΦR, their external mo-
mentum fractions xa/b and flavours a/b are identical.

The dipole DA,j ’s emitter (i), emitted (j) and spectator (k) indices are encoded in Reweight RDA <j> Dipole

in the form 10000 ·i+100 ·j+k, defining the mapping from the kinematics of the H-Event to each constituent
DA,j term uniquely. This information is necessary only if a different functional form of the scales µ̃R or µ̃F,a/b
is considered. The constituent R term also possesses a corresponding entry with value zero.
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2.3 MEPS@LO

A leading order (QCD) multijet merged calculation with Born matrix elements at O(αn+js αmyk) has the
following explicit renormalisation (µR) and factorisation (µF,a/b) scale dependences:

〈O〉MEPS@LO =

jmax∑
j=0

∫
dΦj Bj(Φj ;αs, α, y;µR, µF,a/b, {ai/bi, xa,i/xb,i, ti}) fj(O) , (2.11)

wherein j is the parton multiplicity in addition to the core process, and fj(O) is the vetoed truncated parton
shower implementing both the Sudakov factors determining the survival probability of the given state Φj
down to the merging cut and its ensuing parton shower evolution. Please note that the dependence of both
the matrix element Bj and the vetoed truncated shower fj(O) on the merging cut and the resummation
scale are left implicit as their uncertainty cannot presently be assessed by a simple reweighting. The tupel
{ai/bi, xa,i/xb,i, ti} (cluster step) denotes that part of the cluster history that is related to the initial state
particles and therefore to the applied PDF ratios: the ai/bi are the possibly changing initial state flavours,
the xa,i/xb,i their momentum fractions, and the ti are the reconstructed values of the parton shower evolution
variable at each splitting. As at each branching a PDF ratio fc(x, ti)/fc(x, ti−1) is applied in the parton
shower, with t0 = µF,a = µF,b defined on the core process, the same is done in the multijet merging approach.
Similarly, xa,0/xb,0 are the partonic momentum fractions of the core process.

The scales of each single αs are determined by the cluster history. Thus, the effective global renormalisation
scale is defined through

αn+js (µR) = αns (µcore
R )

j∏
i=1

αs(ti) . (2.12)

For now, it is µR on the left hand side which is consequently varied to assess the renormalisation scale
uncertainty.

Inclusive clustering – ordered histories

Inclusive cluster sequences interprete a given configuration Φj as a series of 1→ 2 splittings connecting it to
a core configuration which it originated from. These splittings can be all (quasi-)singular splittings present
in the given model and are determined probabilisticly as an inversion of a parton shower. The resulting
sequence of cluster steps {ai/bi, xa,i/xb,i, ti} then may be either ordered or unordered.

Ordered histories are histories which satisfy tj < tj−1 < . . . < t1 < t0 = µF,a/b. The constituting Born matrix
elements now have the following renormalisation (µR) and factorisation (µF,a/b = t0) scale depenedences:

Bj(Φj ;αs, α, y;µR, µF,a/b, {ai/bi, xa,i/xb,i, ti})

= faj (xa,j , µF,a)
faj (xa,j , tj)

faj (xa,j , µF,a)

j−1∏
i=0

fai(xa,i, ti)

fai(xa,i, ti+1)
fbj (xb,j , µF,b)

fbj (xb,j , tj)

fbj (xb,j , µF,b)

j−1∏
i=0

fbi(xb,i, ti)

fbi(xb,i, ti+1)

× B′j(Φj ;αs, α, y;µR)

=

j∏
i=1

fai(xa,i, ti)

fai−1
(xa,i−1, ti)

fa0(xa,0, µF,a)

j∏
i=1

fbi(xb,i, ti)

fbi−1
(xb,i−1, ti)

fb0(xb,0, µF,b) B′j(Φj ;αs, α, y;µR)

(2.13)

While the first line reflects the implementation in SHERPA the second one best describes the physical inter-
pretation: starting from the core process with {a0/b0, xa,0/xb,0, t0 = µF,a/b}, this state is evolved outwards
to {aj/bj , xa,j/xb,j , tj} of the phase space configuration Φj . In principle, with every ratio of PDFs there is
also a ratio of flux factors. However, all such factors cancel except for the outermost ones, corresponding to
Φj and, hence, are regarded as part of B′′j , B′j and Bj . Thus,

Bj(Φj ;αs, α, y;µR, µF,a/b, {ai/bi, xa,i/xb,i, ti})

=

j∏
i=1

fai(xa,i, ti)

fai−1(xa,i−1, ti)
fa0(xa,0, µF,a)

j∏
i=1

fbi(xb,i, ti)

fbi−1(xb,i−1, ti)
fb0(xb,0, µF,b) α

n+j
s (µR)αm yk B′′(Φj) ,

(2.14)
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Changing the scales µR → µ̃R and µF,a/b → µ̃F,a/b results in

Bj(Φj ;αs, α, y; µ̃R, µ̃F,a/b, {ai/bi, xa,i/xb,i, ti})

=

j∏
i=1

fai(xa,i, ti)

fai−1(xa,i−1, ti)
fa0(xa,0, µ̃F,a)

j∏
i=1

fbi(xb,i, ti)

fbi−1(xb,i−1, ti)
fb0(xb,0, µ̃F,a) αn+js (µ̃R)αm yk B′′(Φj)

=

j∏
i=1

fai(xa,i, ti)

fai−1
(xa,i−1, ti)

fa0(xa,0, µ̃F,a)

j∏
i=1

fbi(xb,i, ti)

fbi−1
(xb,i−1, ti)

fb0(xb,0, µ̃F,a)

(
αs(µ̃R)

αs(µR)

)n+j
× B′(Φj ;αs, α, y;µR)

=
fa0(xa,0, µ̃F,a)

fa0(xa,0, µF,a)

fb0(xb,0, µ̃F,b)

fb0(xb,0, µF,b)

(
αs(µ̃R)

αs(µR)

)n+j
Bj(Φj ;αs, α, y;µR, µF,a/b, {ai/bi, xa,i/xb,i, ti}) .

(2.15)

Please note that the clustering scales ti are not varied as the parton shower’s scales cannot be varied
consistently yet. For the same reason, when changing the PDF parametrisation, only fa0(xa,0, µ̃F,a) and
fb0(xb,0, µ̃F,b) are evaluated with the new PDF while all other fc(x, t) must be evaluated with the nominal
PDF. Thus, the variation can be computed from either form. In Sherpa’s HepMC event record the second or
third form can be used and respective factors can be accessed in the following way:

Variable Name of HepMC::WeightContainer entry
B(ΦB ;αs, α, y;µR, µF,a/b) Weight

B′(ΦB ;αs, α, y;µR) Reweight B

ntrial NTrial

wnorm WeightNorm

µ2
R MuR2

n+ j OQCD

m+ k OEW

N{ai/bi,xa,i/xb,i,ti} Reweight ClusterStep N

ti Reweight ClusterStep <i> t

xa/b,i Reweight ClusterStep <i> x<1/2>

ai/bi Reweight ClusterStep <i> fl<1/2>

Please note that there are always at least two ClusterSteps present encoding the first and last ratios in
the first line of eq. (2.13). The cluster sequence is thus {aj/bj , xa,j/xb,j , µF,a/b}, {aj/bj , xa,j/xb,j , tj}, . . . ,
{a0/b0, xa,0/xb,0, t0 = µF,a/b}. Hence, there are always j + 1 ClusterStep entries present. The remaining
information, xa, xb, µ

2
F,a, µ2

F,b, αs(µR) and α, can be accessed throught the HepMC::PDFInfo object and
HepMC::GenEvent::alphaQCD/QED(), respectively.

Inclusive clustering – unordered histories

If the whole sequence {tj , tj−1, . . . , t1, t0 = µF,a/b} is not ordered, ie. tk > tk−1, then it is broken down into
ordered subsequences, eg. {tj , tj−1, . . . , tk} and {tk−1, . . . , t1, t0 = µF,a/b}. Thus, eq. (2.13) now reads

Bj(Φj ;αs, α, y;µR, µF,a/b, {ai/bi, xa,i/xb,i, ti})

= faj (xa,j , tj)

j−1∏
i=k

fai(xa,i, ti)

fai(xa,i, ti+1)

k−2∏
i=0

fai(xa,i, ti)

fai(xa,i, ti+1)

× fbj (xb,j , tj)

j−1∏
i=k

fbi(xb,i, ti)

fbi(xb,i, ti+1)

k−2∏
i=0

fbi(xb,i, ti)

fbi(xb,i, ti+1)
B′j(Φj ;αs, α, y;µR)

(2.16)
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in case of a single unordering at k or

Bj(Φj ;αs, α, y;µR, µF,a/b, {ai/bi, xa,i/xb,i, ti})

= faj (xa,j , tj)

j−1∏
i=kl

fai(xa,i, ti)

fai(xa,i, ti+1)
· · ·

k1−2∏
i=k0

fai(xa,i, ti)

fai(xa,i, ti+1)

k0−2∏
i=0

fai(xa,i, ti)

fai(xa,i, ti+1)

× fbj (xb,j , tj)

j−1∏
i=kl

fbi(xb,i, ti)

fbi(xb,i, ti+1)
· · ·

k1−2∏
i=k0

fbi(xb,i, ti)

fbi(xb,i, ti+1)

k0−2∏
i=0

fbi(xb,i, ti)

fbi(xb,i, ti+1)
B′j(Φj ;αs, α, y;µR)

(2.17)

in case of multiple unorderings at {k0, . . . , kl}, ki ∈ {1, . . . , j}. ki > ki−1. In both cases, the outer ratio
correcting the PDF of aj/bj from µF,a/b to tj , present in eq. (2.13), has already been applied.

This transforms into

Bj(Φj ;αs, α, y;µR, µF,a/b, {ai/bi, xa,i/xb,i, ti})

=

j∏
i=kl+1

fai(xa,i, ti)

fai−1(xa,i−1, ti)

fakl
(xa,kl , tkl)

fakl−2
(xa,kl−2, tkl−1)

· · ·
k1−2∏
i=k0+1

fai(xa,i, ti)

fai−1(xa,i−1, ti)

fak0
(xa,k0 , tk0)

fak0−2
(xa,k0−2, tk0−1)

×
k0−2∏
i=1

fai(xa,i, ti)

fai−1
(xa,i−1, ti)

fa0(xa,0, µF,a)

×
j∏

i=kl+1

fbi(xb,i, ti)

fbi−1(xb,i−1, ti)

fbkl
(xb,kl , tkl)

fbkl−2
(xb,kl−2, tkl−1)

· · ·
k1−2∏
i=k0+1

fbi(xb,i, ti)

fbi−1(xb,i−1, ti)

fbk0
(xb,k0 , tk0)

fbk0−2
(xb,k0−2, tk0−1)

×
k0−2∏
i=1

fbi(xb,i, ti)

fbi−1
(xb,i−1, ti)

fb0(xb,0, µF,b)

× B′j(Φj ;αs, α, y;µR)

(2.18)

If either only the first sequence is unordered (kl = j), ie. tj > tj−1, or the last sequence is unordered (k0 = 1),
ie. t1 > t0 = µF,a/b, the respective product is omitted. The latter leads to a vanishing factorisation scale and
PDF parametrisation dependence as long as parton showering uncertainties are not included. Flux factors
are nonetheless accounted for such that they cancel pairwise, as in the ordered case, necessitating them only
for the external state Φj and collecting them in B′′j , B′j and Bj , respectively.

Summarily, changing

Bj(Φj ;αs, α, y; µ̃R, µ̃F,a/b, {ai/bi, xa,i/xb,i, ti})

=

j∏
i=kl+1

fai(xa,i, ti)

fai−1
(xa,i−1, ti)

fakl
(xa,kl , tkl)

fakl−2
(xa,kl−2, tkl−1)

· · ·
k1−2∏
i=k0+1

fai(xa,i, ti)

fai−1
(xa,i−1, ti)

fak0
(xa,k0 , tk0)

fak0−2
(xa,k0−2, tk0−1)

×
k0−2∏
i=1

fai(xa,i, ti)

fai−1(xa,i−1, ti)
fa0(xa,0, µF,a)

×
j∏

i=kl+1

fbi(xb,i, ti)

fbi−1
(xb,i−1, ti)

fbkl
(xb,kl , tkl)

fbkl−2
(xb,kl−2, tkl−1)

· · ·
k1−2∏
i=k0+1

fbi(xb,i, ti)

fbi−1
(xb,i−1, ti)

fbk0
(xb,k0 , tk0)

fbk0−2
(xb,k0−2, tk0−1)

×
k0−2∏
i=1

fbi(xb,i, ti)

fbi−1(xb,i−1, ti)
fb0(xb,0, µF,b)

× αn+js (µ̃R)αm yk B′′(Φj)

(2.19)
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=

j∏
i=kl+1

fai(xa,i, ti)

fai−1
(xa,i−1, ti)

fakl
(xa,kl , tkl)

fakl−2
(xa,kl−2, tkl−1)

· · ·
k1−2∏
i=k0+1

fai(xa,i, ti)

fai−1
(xa,i−1, ti)

fak0
(xa,k0 , tk0)

fak0−2
(xa,k0−2, tk0−1)

×
k0−2∏
i=1

fai(xa,i, ti)

fai−1(xa,i−1, ti)
fa0(xa,0, µF,a)

×
j∏

i=kl+1

fbi(xb,i, ti)

fbi−1
(xb,i−1, ti)

fbkl
(xb,kl , tkl)

fbkl−2
(xb,kl−2, tkl−1)

· · ·
k1−2∏
i=k0+1

fbi(xb,i, ti)

fbi−1
(xb,i−1, ti)

fbk0
(xb,k0 , tk0)

fbk0−2
(xb,k0−2, tk0−1)

×
k0−2∏
i=1

fbi(xb,i, ti)

fbi−1
(xb,i−1, ti)

fb0(xb,0, µF,b)

× B′j(Φj ;αs, α, y;µR)

=


fa0(xa,0, µ̃F,a)

fa0(xa,0, µF,a)

fb0(xb,0, µ̃F,b)

fb0(xb,0, µF,b)
if k0 > 1

1 k0 = 1


(
αs(µ̃R)

αs(µR)

)n+j
× Bj(Φj ;αs, α, y;µR, µF,a/b, {ai/bi, xa,i/xb,i, ti}) .

Exclusive clustering

Exclusive cluster sequences are always ordered, involve only QCD splittings and terminate when either the
specified core process is reached or an unordering is encountered. This state is then declared as new core
process with its own set of core scales µcore

R and t0 = µF,a/b. The reweighting proceeds then as in the ordered
case of the inclusive clustering.
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